Towards an Implantable, Low Flow Micropump That Uses No Power in the Blocked-Flow State
نویسندگان
چکیده
Low flow rate micropumps play an increasingly important role in drug therapy research. Infusions to small biological structures and lab-on-a-chip applications require ultra-low flow rates and will benefit from the ability to expend no power in the blocked-flow state. Here we present a planar micropump based on gallium phase-change actuation that leverages expansion during solidification to occlude the flow channel in the off-power state. The presented four chamber peristaltic micropump was fabricated with a combination of Micro Electro Mechanical System (MEMS) techniques and additive manufacturing direct write technologies. The device is 7 mm ˆ 13 mm ˆ 1 mm (<100 mm3) with the flow channel and exterior coated with biocompatible Parylene-C, critical for implantable applications. Controllable pump rates from 18 to 104 nL/min were demonstrated, with 11.1 ̆ 0.35 nL pumped per actuation at an efficiency of 11 mJ/nL. The normally-closed state of the gallium actuator prevents flow and diffusion between the pump and the biological system or lab-on-a-chip, without consuming power. This is especially important for implanted applications with periodic drug delivery regimens.
منابع مشابه
Mems Based Drug Delivery System Using Micropump
MEMS based Drug Delivery System (DDS) using an in-plane micropump enables us to make a compact, inexpensive system. This paper presents the new design of transdermal drug delivery system. A conceptual DDS design is proposed. This design consists of a unit which houses the micropump, electronic and power circuitry. This implantable unit is connected to a subcutaneous port via a silicone catheter...
متن کاملA Wireless Implantable Micropump for Chronic Drug Infusion Against Cancer.
We present an implantable micropump with a miniature form factor and completely wireless operation that enables chronic drug administration intended for evaluation and development of cancer therapies in freely moving small research animals such as rodents. The low power electrolysis actuator avoids the need for heavy implantable batteries. The infusion system features a class E inductive poweri...
متن کاملEmbeddable Low-voltage Micropump Using Electroosmosis of the Second Kind
A low-voltage micropump with no moving parts and based on standard MEMS fabrication techniques has been developed. The pump has been characterized by pumping a variety of liquids, including de-ionized water, phosphate buffer saline, and aqueous solutions of sugars and alcohols as well as pure methanol, with typical pumping speeds of a few hundred micrometer per second. The small power/voltage r...
متن کاملA Mems Micropump System with One-way Valve for Chronic Drug Delivery
Implantable micropump systems capable of user-controlled and site-specific chronic drug delivery in small animals are a critical unmet need in drug discovery and development. Our electrochemical bellows actuator provides current-controlled flow rate and is integrated to form a fully implantable system with a refillable reservoir and one-way valve that prevents mixing of biological fluids with t...
متن کاملCFD Application in 3D flow filed modeling of a large dam reservoir
In the present paper, a 3D numerical model has been applied to predict the flow hydrodynamics around power intakes within the Dez dam reservoir. The Dez dam is a 203 m high, double arch concrete dam which is constructed by Italians in 1962. Since then, sedimentation in reservoirhas continued and since the dam does not have bottom outlet, the reservoir bed level is raising by a rate of about 2.5...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Micromachines
دوره 7 شماره
صفحات -
تاریخ انتشار 2016